10,454 research outputs found

    First-principles study on dielectric properties of NaCl crystal and ultrathin NaCl films under finite external electric field

    Full text link
    We present a first-principles study on the dielectric properties of an NaCl crystal and ultrathin NaCl films under a finite external electric field. Our results show that the high-frequency dielectric constant of the films is not affected by the finite size effect from crystal surfaces and is close to that of the crystal, whereas the static one is sensitive to the thickness of the film due to the difference in the atomic configurations between the surface and inside of the film.Comment: 11 pages and 4 figure

    First-principles transport calculation method based on real-space finite-difference nonequilibrium Green's function scheme

    Get PDF
    We demonstrate an efficient nonequilibrium Green's function transport calculation procedure based on the real-space finite-difference method. The direct inversion of matrices for obtaining the self-energy terms of electrodes is computationally demanding in the real-space method because the matrix dimension corresponds to the number of grid points in the unit cell of electrodes, which is much larger than that of sites in the tight-binding approach. The procedure using the ratio matrices of the overbridging boundary-matching technique [Phys. Rev. B {\bf 67}, 195315 (2003)], which is related to the wave functions of a couple of grid planes in the matching regions, greatly reduces the computational effort to calculate self-energy terms without losing mathematical strictness. In addition, the present procedure saves computational time to obtain Green's function of the semi-infinite system required in the Landauer-B\"uttiker formula. Moreover, the compact expression to relate Green's functions and scattering wave functions, which provide a real-space picture of the scattering process, is introduced. An example of the calculated results is given for the transport property of the BN ring connected to (9,0) carbon nanotubes. The wave function matching at the interface reveals that the rotational symmetry of wave functions with respect to the tube axis plays an important role in electron transport. Since the states coming from and going to electrodes show threefold rotational symmetry, the states in the vicinity of the Fermi level, whose wave function exhibits fivefold symmetry, do not contribute to the electron transport through the BN ring.Comment: 34 page

    First-principles study on scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces

    Full text link
    Scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces are studied using first-principles calculations. Our results show that the calculated filled-state images and local density of states are consistent with recent experimental results, and the empty-state images appear significantly different from the filled-state ones. To elucidate the origin of this difference, we examined in detail the local density of states, which affects the images, and found that the bonding and antibonding states of surface silicon atoms largely affect the difference between the filled- and empty-state images.Comment: 4 pages, and 4 figure

    Thin-film piezoelectric impact sensor array fabricated on a Si slider for measuring head-disk interaction

    Get PDF
    A new type of Acoustic Emission sensor using a thin film piezoelectric material (sputtered ZnO) was developed for measuring head-disk interaction in a rigid magnetic disk system. The sensor is mounted on a Si slider (length: 3 mm) and was fabricated using micro-machining techniques in our on-going efforts to downsize sliders. Some fundamental tests of the sensor were conducted: sensitivity and frequency characteristics, and a flying test over a rotating bump disk

    Piezoelectric impact force sensor array for tribological research on rigid disk storage media

    Get PDF
    This paper presents a method to measure impact forces on a surface by means of a piezoelectric thin film sensor array. The output signals of the sensor array provide information about the position, magnitude and wave form of the impact force. The sensor array may be used for tribological studies to the slider disk interface of a rigid disk storage device. In such a device a slider head assembly is flying above the rotating disk with a typical spacing of 100nm. Possible mechanical interactions between the slider and the disk are expected to produce impact forces in the order of 0.1N with a frequency range from 100kHz to 100MHz [1]

    Unsolved problems in the lowermost mantle

    Get PDF
    Many characteristics of D '' layer may be attributed to the recently discovered MgSiO3 post-perovskite phase without chemical heterogeneities. They include a sharp discontinuity at the top of D '', regional variation in seismic anisotropy, and a steep Clapeyron slope. However, some features remain unexplained. The seismically inferred velocity jump is too large in comparison to first principles calculations, and the sharpness of the discontinuity may require a chemical boundary. Chemical heterogeneity may play an important role in addition to the phase transformation from perovskite to post-perovskite. Phase transformation and chemical heterogeneity and the attendant changes in physical properties, such as rheology and thermal conductivity, are likely to play competing roles in defining the dynamical stability of the D '' layer. Revealing the relative roles between phase transition and chemical anomalies is an outstanding challenge in the study of the role of D '' in thermal-chemical evolution of the Earth
    • …
    corecore